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Abstract

Out¯ow from a circular pipe is considered for cavity ¯ow. The cavity geometry, the end depth and the
jet trajectories are described, in terms of the pipe Froude number. This is an extension of previous work
for pipes su�ciently large such that e�ects of viscosity and surface tension can be neglected. # 1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Out¯ow from a pipe that is nearly horizontal exhibits a peculiar transition between free
surface and pressurized ¯ow conditions. The so-called cavity out¯ow consists of an upstream
pressurized and a downstream free surface ¯ow portion. For pipes su�ciently large, the e�ects
of viscosity and surface tension can approximately be neglected, and a purely gravitational
¯ow may be considered, in which e�ects of streamline curvature are signi®cant. The previous
®ndings of Cola and Benjamin are generalized by accounting for the ¯ow con®guration close
to the e�ux section.
Cavity out¯ow from pipes is relevant in various domains, including the emptying of long-

necked bottles, applications in hydraulic engineering and industrial hydraulics. There is a
particular relevance in the range of occurrences, and it is demonstrated that the pipe slope has
a relatively small e�ect on the out¯ow features. Expressions are derived for the cavity shape,
the end depth ratio and the nappe geometry. The results depend mainly on the pipe Froude
number f and a generalized approach is given for the circular pipe. All results are readily
applicable for design purposes, and a distinction between cavity out¯ow and bubble washout is
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made. The computations are demonstrated to be in essential agreement with laboratory
observations.

2. Review

Cola (1965) considered a semi-in®nitely long horizontal duct of rectangular cross-section
initially ®lled with water. If the barrier is abruptly removed, a water wave similar to a
dambreak wave is set up, with a negative wave propagating into the upstream reach and
emptying this portion, and a positive wave propagating into the initially dry duct portion. The
emptying process can be approximated with the Ritter solution for the dambreak wave
(Liggett, 1994):

. positive front velocity is +2( gd )1/2;

. negative front velocity is ÿ( gd )1/2;

. ¯ow depth at rupture section is (4/9)d; and

. discharge at rupture section is (8/27)( gd 3)1/2.

These relations hold as long as the negative front has not reached the upstream end of the
duct.
Cola was able to demonstrate that point S of the negative front location deserves particular

attention. Because the energy head is initially equal to its height d, and assuming a velocity
equal to the propagation velocity ÿ( gd )1/2, one would have HA=d+( gd )/(2 g)=(3/2)d. This
result is demonstrated to be in error, mainly because of streamline curvature e�ects. In fact,
point S corresponds to a stagnation point for an observer moving with the propagation speed
c= ÿ( gd )1/2, and Cola demonstrated that the upstream pressure head curve is located by
ÿc 2/(2 g) below the vertex of the duct. For an observer moving with a velocity c, the
stagnation point remains thus steady and the velocity head is compensated for by the
depression height, such that the energy head is H= hc=d along the entire duct, provided
friction is neglected.
From energy considerations, it can be demonstrated that ¯ows with Y>0.5 are physically

impossible. Cola (1965) introduced two cases of ¯ow (Fig. 1):

1. Y=0.50 as a potential ¯ow with a smooth reduction of ¯ow depth from the stagnation
point to the asymptotic downstream depth; and

2. Y<0.5 as a ¯ow with a ®nite energy dissipation, due to the formation of a hydraulic jump.

Fig. 1. Bubble propagating in rectangular duct: (a) potential ¯ow; (b) dissipative ¯ow (Cola, 1965).
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Cola (1967) extended his study to circular pipes of diameter D. Observations indicate
substantial agreement with predictions regarding propagation velocity, and upstream
subpressure head. For potential ¯ow, the downstream pipe ®lling obtains a/D=0.681, thus
considerably larger than for the rectangular duct.
Benjamin (1968) is currently considered as the ®rst having introduced the phenomenon, and

it seems that the contributions of Cola are not su�ciently acknowledged. The particularity of
Benjamin's paper is its reference to a much larger ®eld of applications than the hydraulic
studies of Cola, with the results being basically identical. For the circular pipe, Benjamin found
an asymptotic downstream depth a/D=0.580 instead of 0.681, and experiments to be
discussed below indicate approximately a/D=0.630. Whereas Cola determined the free surface
pro®le graphically, Benjamin used conformal mapping. For a rectangular duct, the angle at the
stagnation point is 308.
Cola (1970) considered out¯ow from a horizontal pipe by introducing the so-called pipe

Froude number f= V/( gD)1/2, with V as the pipe full-¯ow velocity. Free surface ¯ow occurs
for f<0.62 and the pipe is fully pressurized for f>1.10. The e�ect of downstream
submergence on the pipe out¯ow was also investigated.
Wallis et al. (1977) considered the out¯ow from a horizontal pipe using a basic hydraulic

approach. They distinguished: (1) critical ¯ow for partial pipe ®lling; (2) bubble ¯ow; (3)
bubble washout; and (4) full pipe ¯ow. It was demonstrated that both viscosity and surface
tension e�ects are negligible provided the pipe diameter is larger than 100 mm, and the ¯uids
involved are water and air. Comparable results followed also from Wilkinson (1982).
The contributions of Bendiksen (1984), and Alves et al. (1993), among others, refer to the

drift velocity in a pipe where a large bubble advances. Baines et al. (1985) investigated the
e�ect of downstream submergence on the bubble ¯ow pattern, and CoueÈ t and Strumolo (1987)
analyzed the e�ect of surface tension on bubbles rising in an arbitrarily sloping tube. Also,
they presented solutions for the bubble geometry in a potential ¯ow, by including surface
tension.
Montes (1997) studied the con®guration also treated below. Incipient cavity ¯ow was

identi®ed for f=0.51, and incipient pressurized ¯ow for f=1.06, subject to some variation
when compared with other results. The cavity is computed for a potential ¯ow con®guration.

3. Experiments

The internal pipe diameter was D=240 mm to inhibit scale e�ects. According to the
literature review, e�ects of surface tension and viscosity are thus negligible. The plexiglass pipe
had a length of 16 diameters and was connected to the supply pipe. The set-up was mounted in
an existing rectangular channel 0.50 m wide and the instrumentation was available. Free
surface depths downstream of the stagnation point were measured by the circumference, form
the pipe vertex to the free surface by accounting for the pipe thickness of 8 mm. Previous
experiments indicated maximum deviations of about 22.5 mm. Velocities at the end section of
the pipe were measured with a conventional propeller meter of internal diameter 8 mm. The
transverse variation of velocity at the end section was small, and only the axial velocity
distribution was measured. The nappe pro®les downstream from the pipe were observed with
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point gages to the nearest millimeter. For the lower nappe of the out¯ow jet, an inverted point
gage was used.
The discharge was measured with a triangular V-notch weir to 22% or 20.2 l sÿ1,

whichever was larger. The bottom slope of the pipe was varied as S0= ÿ0.01, 0, and +0.01,
and the e�ect on cavity out¯ow was extremely small. In a special series of experiments, the
transition from the supply to the test pipe was throttled with a plate of 50% opening of half-
circular shape. The approach ¯ow to the test pipe involved then a bottom jet which expanded
into the test pipe, over a length of about 3D. Because cavity lengths smaller than 10D were
studied, there remained a length of about 3D for ¯ow development. No e�ect of the plate on
the cavity ¯ow could be detected, and it follows that cavity ¯ow is extremely stable to
upstream ¯ow perturbation. For any given bottom slope S0, a discharge su�ciently large was
selected and the top portion of the out¯ow section was blocked so as to force a hydraulic jump
in the pipe. Once the transition from free surface approach to pressurized pipe ¯ow occurred,
the approach portion deaerated and the hydraulic jump moved upstream. All air was washed
downstream and the pipe started to run fully pressurized without any air bubbles in the ¯ow.
The following results refer to the cavity shape, the end depth ratio for cavity out¯ow, the

location of the stagnation point relative to the end section and velocity distributions at the end
section, as functions of the pipe Froude number. Also, the nappe pro®les downstream from the
end section are discussed.

4. Description of ¯ow

Consider a nearly horizontal and large circular pipe that terminates at the end section. Those
pipes may ¯ow either fully pressurized with water, or partially ®lled with a strati®ed air-water
¯ow. The transition from partially ®lled to pressurized pipe ¯ows is complex and involves
mixtures of air and water in general. The present problem is particular as mixture ¯ow does
not occur, but the transition includes both free surface and pressurized ¯ows. Three cases may
be distinguished (Fig. 2):

1. free surface ¯ow, with an asymptotic approach ¯ow depth and a drawdown to the end
section, provided the discharge is smaller than the lower transition discharge Qa;

2. upstream pressurized ¯ow, with a stagnation point S, followed by free surface ¯ow
decreasing toward the end section;

3. fully pressurized ¯ow with a discharge larger than the upper transition discharge Qp, with a
circular jet discharging into the atmosphere.

Fig. 2. Types of pipe out¯ows.
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The location of the stagnation point and the out¯ow jet features depend signi®cantly on the
so-called pipe Froude number f= V/( gD)1/2 where V is the average velocity in the pressurized
pipe reach, g the gravitational acceleration and D the pipe diameter. The transition Froude
numbers determined in the present study are fa=0.544 and fp31.15. For f< fa the pipe runs
partially ®lled, and fully pressurized ¯ow occurs for f> fp.
Fig. 3 shows out¯ow geometries of pipe ¯ows for various values of f. For f=0.804 the

cavity is nearly washed out of the pipe, with a transition length Xt=xt/D=0.60 [Fig. 3(a)],
where xt is the distance from the time-averaged stagnation point to the end section. For
f=0.73 [Fig. 3(b)] this length is somewhat larger (Xt=0.9) but the out¯ow is similar to the
previous case. For f=0.693 [Fig. 3(d)] the in¯exion point of the free surface is almost at the
end section and the cavity length is Xt=1.1, i.e. larger than the diameter, and Xt=1.8 for
f=0.657 [Fig. 3(d)]. Decreasing the relative discharge by only ÿ3% to f=0.639 makes the
cavity length signi®cantly longer to Xt=3.0 [Fig. 3(e)]. This ¯ow has a horizontal reach
between the stagnation zone and the drawdown close to the end section. Then, the approach of
Benjamin (1968) applies, and cavities shorter than 3 diameters are di�erent from long cavities.
One may distinguish between:

. bubble washout for XtE3, i.e. fe0.64; and

. cavity out¯ow for Xt>3, i.e. f<0.64.

For f=0.586, the cavity length is about 6.8 [Fig. 3(f )], and the horizontal ¯ow portion is
considerable. A lower limit value f=0.548 was attained, but experiments were then in¯uenced
by the detailed supply geometry. Also, the transition from cavity out¯ow to free surface ¯ow
depended considerably on the bottom slope. The lower limit value is also in¯uenced by the
surface roughness of the pipe, given the large values of Xt. Montes quoted values between
fa=0.51 (own experiments) and fa=0.64 (Smith). For the sake of approximation of the
present data, a computational value fa=0.544 is adopted (Montes, 1997).
Top views on the cavities are shown in Fig. 4. For large f, the bubble fronts have a larger

radius of curvature than for smaller f. Also, the bubble front was more stable for large f.
Typical pro®les for cavity out¯ow are presented in Fig. 5. The angle of the pro®le at the
stagnation point is 338 (238), and the constant depth ratio is 0.62520.02.
For cavity out¯ow there is a tendency of wave formation with a wave amplitude of about

20.02D. This tendency grows with decreasing f, and the transition to free surface pipe ¯ow is
always accompanied with a downstream wave formation. Fig. 6 shows sequences of the
transition with the 50% gate mounted at the upstream end of the channel (as previously
described). First, the wave breaks [Fig. 6(a)], an air pocket moves upstream to the space
downstream of the gate with a low pressure zone [Fig. 6(b)], and the out¯ow from the supply
pipe is aerated [Fig. 6(c)]. The air entrained by the jump is transported downstream into the
cavity, associated with a build-up of the subpressure again. The cavity ¯ow develops another
breaking wave [Fig. 6(d)], and the next air pocket is transported upstream. For certain values
of f, depending on the pipe slope, this cycle could be maintained, and the formation of an
isolated slug could be observed. Once the value f was decreased below f=0.50, say, slugs
disappeared and a stable free surface ¯ow was established. Here, we refer exclusively to cavity
out¯ow.
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Fig. 3. Bubble shapes for cavity out¯ow from a circular pipe. f=(a) 0.804; (b) 0.731; (c) 0.693; (d) 0.657; (e) 0.639;

(f ) 0.586.
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Fig. 4. Top views on bubble nose close to stagnation point. f=(a) 0.731; (b) 0.657; (c) 0.586.
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5. Bubble shape

5.1. Rectangular channel

The shape of a steady Benjamin (or Cola) bubble in a su�ciently large channel involves
streamline curvature e�ects, and the in¯uences of both viscosity and surface tension can be
neglected. The governing equation of the free surface pro®le involves an extended Boussinesq
equation derived by Hager and Hutter (1984). For potential ¯ow, the energy head H= h0
remains constant and equal to the duct height in a horizontal channel of rectangular cross-
section. With h as the pressure head, q as the discharge per unit width, g as the gravitational
acceleration and h 0=dh/dx, h0=d2h/dx 2 as derivatives of the pressure head pro®le h(x),

H � h0 � h� q2

2gh2
1� 2hh00 ÿ h02

3

�
:

�
�1�

Fig. 5. Side views of cavities for f=(a) 0.657; (b) 0.586.
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The derivatives of h(x) drop for the asymptotic downstream depth h= a=(1/2)h0 to
yield q 2/(2ga 3)=1, or Fa= q/( ga 3)1/2=21/2. These results are due to Benjamin (1968).
Introducing dimensionless coordinates X= x/a and y= h/a, (1) may be expressed as

2 � y� yÿ2 1� 2yy 00 ÿ y 02

3

�
:

�
�2�

A ®rst integration subject to the boundary conditions y 0( y=1)=0 and y(X=0)=2 gives

y 02 � 3

2
�2ÿ 5y� 4y2 ÿ y3� � 3

2
�yÿ 1�2�2ÿ y�: �3�

For y=2 the slope of the pressure head line is y 0=0 as required. Integration of (3) gives

y � 2ÿ tanh2��3=8�1=2X �: �4�
The pro®le y(X ) is similar to a solitary wave of amplitude y=2, i.e. of double height
compared to the asymptotic free stream depth y=1 [Fig. 7(a)].
The free surface pro®le T(X ) where T= t/a is the height of the free surface above the

channel bottom can simply be expressed in terms of y as (Hager and Hutter, 1984)

T

y
� 1� 1

2
y 02; i:e: from �3�; �5�

Fig. 6. Transition from cavity to slug ¯ow (details in text).
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T

y
� 1� 3

4
� yÿ 1�2�2ÿ y�: �6�

The free surface slope T 0(T=2), i.e. T 0( y=1.85) from (6) is T 0(T=2)= ÿ0.175 (ÿ9.98).
Further downstream, the free surface slope increases up to the point of in¯ection y=5/3,
where y 02=2/9 from (3) and thus T 0= ÿ0.523 (ÿ27.68). Close to the DUCT vertex, the free
surface slope is almost constant at ÿ0.5, and the bubble shape may be approximated as
[Fig. 7(a)]

T � 2ÿ tanh��2=3� �X �: �7�
Here, �X =Xÿ0.8 is the origin of the bubble. Compared to the mathematically exact solution,
(7) has a linear decrease of ¯ow depth close to T=2. Because capillary e�ects are signi®cant
close to the vertex, this domain is not properly reproduced with the present approach.

5.2. Circular conduit

The cross-sectional area F(h) of a partially ®lled conduit is involved, and conduits with a
®lling ratio larger than h/D=0.4 may be approximated (6%) as a substitute rectangular
channel

F � �p=4�hD: �8�
The conduit may thus be considered as a rectangular channel of substitute with b=(p/4)D.
Benjamin (1968) determined the asymptotic ¯ow depth in a circular conduit to a=0.563D,

or A=1.776. The modi®ed (1) can be expressed for the substitute rectangular channel as

H � h0 � D � h� Q2

2gb2h2
1� 2hh00 ÿ h02

3

�
;

�
�9�

with Q/( gD 5)1/2=(p/4)A ÿ3/2[2(Aÿ1)]1/2 where A= D/a, y= h/a and X= x/a. Note that the
maximum discharge is QM/( gD 5)1/2=(p/4)(2/3)3/2 for A=3/2. Inserting in (9) gives

Fig. 7. (Ð) Pressure head pro®le y(X) and (Ð) free surface pro®le T(X) for (a) rectangular duct and (b) circular

pipe.
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A � y� �Aÿ 1�yÿ2 1� 2yy 00 ÿ y 02

3

�
:

�
�10�

For A=2, (10) reduces to (2). Integrating for the boundary condition y 02( y=1)=0 gives

y 02 � 3

2

� yÿ 1�2�2Aÿ 2ÿ y�
�Aÿ 1� : �11�

For A=3/2 retained previously, this yields

y 02 � 3�yÿ 1�3: �12�
Integrating a second time subject to the boundary condition y(X=0)=(3/2) gives [Fig. 7(b)]

y � 1� �21=2 � �31=2=2�X �ÿ2: �13�
Fig. 7 compares the two solutions (4) and (13) and the main di�erence is at the transition from
pressurized to free surface ¯ows. The present model does not account for surface tension.
Therefore, the general trend of free surfaces for both rectangular and circular conduits is
similar. The latter can be approximated with X=X+0.25 as

t

a
� 1� 0:5 exp�ÿ �X �: �14�

With T= t/D and w= �x=D where �x is measured from the transition point, (14) may be
explicitly expressed as [Fig. 7(b)]

T � 2

3
1� 0:5 exp ÿ 3

2
w
��
:

��
�15�

Experiments are used to verify the prediction.

6. End depth ratio

The end depth ratio ye=he/D with he as the end depth [Fig. 8(b)] can be determined with
the momentum equation provided the pressure conditions are correctly accounted for. For
cavity out¯ow, the residual pressure at the out¯ow section is negligible (Hager, 1983). For
bubble washout the ¯ow conditions are modi®ed, however, because of velocity and pressure
interaction close to the e�ux section. These uncertainties are packed into a pressure coe�cient,
s, and the modi®ed momentum equation reads, in analogy to Cola (1967) or Benjamin (1968)

Fig. 8. (a) Cavity ¯ow in an in®nitely long circular pipe; (b) cavity out¯ow close to end section.
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rQ2

�p=4�D2
� rgpD3

8
ÿ s

rV2

2

pD2

4
� rQ2

�p=4�Dhe
: �16�

Here, the out¯ow section has been approximated as given in (8). Substituting f= V/( gD)1/2

and solving for ye=he/D gives

ye � 2f 2

1� f 2�2ÿ s� : �17�

For s=1 the solution for cavity out¯ow is obtained. Cola (1967) determined the pressure head
2.4D upstream from the end section as s=1/2. However, the pressure at the end section is not
contained yet, and s=2/3 can be adopted. Eq. (17) holds for 0.544< ye<1, i.e. for
0.65< f<1.20.

7. Experimental results

Fig. 9 shows pipe out¯ow for various values of f. The value f=1.16 corresponds to the
upper limit of discharge, with the pipe just fully pressurized, and the jet of initial height D.

Fig. 9. Cavity and nappe pro®les for f=(a) 1.16; (b) 0.794; (c) 0.700; (d) 0.641; (e) 0.628; (f ) 0.602.
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Note the discontinuity in slope at the upper out¯ow crest, where the velocity is equal to zero
[Fig. 9(a)]. For f=0.794 and 0.700, reference is made to bubble washout, and the end depth
ratio is signi®cantly reduced, with the bubble length of the order of D [Fig. 9(b) and (c)].
Typical cavity ¯ow occurs for f=0.641 and 0.628 [Fig. 9(d) and (e)] and the horizontal ¯ow
portion is now developed. For f=0.602, the cavity length is 7D, with a single small wave
[Fig. 9(f )]. The ¯ow was so stable that the wave remained small, and wave breaking never
occurred.
The surface pro®le T(w) for cavity out¯ow is shown in Fig. 10, together with the prediction

(15). The computed asymptotic ¯ow depth is somewhat too large, and an average experimental
value is T=0.63 instead of (2/3). The bubble slope close to the stagnation point is practically
constant dT/dw= ÿ0.5, independent of the exact value of f. The corresponding downstream
Froude number is F= Q/( gDh 4)1/2=(p/4y 2) f31.23 when assuming f=0.62 as an average
value. For such F, undular surface waves of small wave height are typical.
The end depth ratio ye=he/D varies with f as predicted in (17). Fig. 11(a) shows substantial

agreement between the momentum approach and the data. The e�ect of bottom slope
(ÿ1%E S0E+1%) is small, except close to the transition for free surface ¯ow ( f<0.6), as
previously discussed. The data could also be approximated with

ye � 5

6
f; 0:5 � ye � 1: �18�

For a given pipe diameter, the end depth thus increases linearly with the full pipe velocity V.

Fig. 10. Cavity pro®le T(w) for f=(D) 0.641; (t) 0.628, (y) 0.602 and (Ð) (15).

Fig. 11. (a) End depth ratio ye( f ) for S0=(T) ÿ1%, (q) 0, (R) +1% and ( . . . ) (17), (Ð) (18); (b) relative distance
of stagnation point Xt( f ) (Ð) (19).
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The distance of the stagnation point from the end section Xt=xt/D is shown in
Fig. 11(b), as a function of f. With the ®ctitious transition pipe Froude number ft=0.55,
the data follow

Xt � 0:09� fÿ ft�ÿ3=2; 0:6 < f < 1:2: �19�
For cavity washout, the distance decreases almost linearly with f as [Xtÿ(4/3)]/
( fÿ ft)= ÿ2, whereas the decrease for cavity out¯ow is larger with increasing f, as given
with (19).

8. Nappe trajectories

The lower and upper nappes of free surface ¯ow in a circular pipe were investigated by
Clausnitzer and Hager (1997). For an approach ¯ow depth h0<D and an approach Froude
number F0=Q/( gDh 4

0)
1/2, the end depth ratio Ye=he/h0 is

Ye � 2F2
0

1� 2F2
0

�2=3

:

 
�20�

The lower nappe trajectory zt(xt) with the origin at the bottom of the end section and zt
measured positively downwards [Fig. 8(b)] depended essentially on the streamwise coordinate
X0=(xt/h0)F

ÿ0.8
0 . For the present con®guration, the lengths were related to the end depth he

instead of the upstream approach depth h0. Fig. 12(a) shows that Ze= zt/he can be related to
Xe=(xt/he)F

ÿ0.8
e with the scaling Froude number Fe=Q/( gDh 4

e)
1/2 as

Ze � 1

3
Xe � 1

4
X2

e; f � 0:79: �21�

The previous relation established by Clausnitzer and Hager applies thus also for Ze(Xe),
instead of Z0(X0). For f>0.79, some deviation is caused by the modi®ed out¯ow
con®guration.
The axial nappe thickness Zt(Xe) with Zt= tt/he is shown in Fig. 8(b). Whereas the nappe

thickness increases for free surface out¯ow when normalized with h0 (Clausnitzer and Hager,

Fig. 12. Nappe trajectories for cavity out¯ow (a) lower nappe Ze(Xe) with (Ð) (21); (b) axial nappe thickness Zt(Xe)
with (Ð) (22). f=(T) 0.628, (Y) 0.641, (R) 0.700, (Q) 0.794, (y) 1.19.
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1997), the nappe thickness decreases in the present case as [Fig. 12(b)]

Zt � 1ÿ 0:265nXe �22�
where n=1 for fE0.70 (cavity out¯ow), and n=2 for f>0.70 (bubble washout).

9. Velocity distribution

Fig. 13 shows dimensionless axial velocity distributions m(Z) where m= v/( gD)1/2 and
Z= z/D. In all cases, the velocity increases from the upper to the lower trajectory. For
f=0.628 the velocity increase is almost linear, and the pressure head based on the assumption
of constant energy is practically zero [Fig. 13(a)]. For f=0.75 (bubble washout) the velocity
distribution is similar to Fig. 13(a) but there is a slight negative pressure at the end section
[Fig. 13(b)]. For f=1.16, ®nally, i.e. the transition from bubble washout to pressurized pipe
¯ow, the velocity is practically equal to zero at the pipe vertex, associated with a signi®cant
subpressure of almost ÿ0.5( rgD), and the velocity increases signi®cantly at the lower trajectory
associated with a decrease of internal pressure [Fig. 13(c)]. The negative pressure force is
ÿ0.304 ( rgpD 2/4), with the average velocity 1.17( gD)1/2.

10. Conclusions

Cavity out¯ow from a nearly horizontal pipe is investigated, based on detailed
experimentation and a hydraulic approach. The agreement between predictions and
observations is satisfactory, and the pipe Froude number f is the main variable.
Based on a literature review, one should rather refer to the Cola bubble than the Benjamin

bubble. A bubble may be ®xed with a corresponding approach discharge and observations can
be conducted for steady rather than for unsteady ¯ow conditions. The cavity shape is described
in terms of f, and bubble washout is distinguished from cavity out¯ow. The shape of the cavity
pro®le is determined, based on an extended Boussinesq equation. Eq. (15) is in agreement with
observations for cavity out¯ow. The end depth ratio, and the location of the stagnation point

Fig. 13. Axial velocity distribution at end section m(Z) for f=(a) 0.628; (b) 0.75; (c) 1.16. (*) Local velocity, (w)
trajectory geometry, (- - -) pressure distribution for potential ¯ow.
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relative to the end section are determined. Finally, the lower nappe pro®le and the nappe
thickness are speci®ed, based on an earlier approach for free surface pipe out¯ow.
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